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A common polymorphism of the brain-derived neurotrophic

factor (BDNF) gene (Val66Met) has been implicated in anxiety,

which is associated with lower vagal activity. We hypothesize that

the BDNF Val66Met polymorphism may have a modulatory

effect on the cardiac sympathovagal balance. A total of 211

healthy Chinese-Han adults (58 male, 153 female, aged

33.3� 10.3 years) were recruited with three BDNF genotypes:

Val/Val (47, 22.3%), Val/Met (108, 51.2%), and Met/Met (56,

26.5%). Autonomic function was assessed via an analysis of heart

rate variability. Reductions in high-frequency power, an index

for parasympathetic activity, and increases in the low-frequency/

high-frequency ratio, an index for sympathovagal balance, were

found in subjects bearing the Met/Met genotype as compared to

the Val/Val group. These results suggest that an altered

sympathovagal balance with relatively decreased parasym-

pathetic activity is associated with the Met/Met genotype,

suggesting a potential role for the studied BDNF polymorphism

in modulating cardiac autonomic functions. � 2010 Wiley-Liss, Inc.
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INTRODUCTION

Brain-derived neurotrophic factor (BDNF), a secretory protein in

the neurotrophin family, is essential for the survival, development,

and maintenance of the neuronal systems [Maisonpierre et al.,

1990; Tuszynski and Gage, 1994]. A single-nucleotide polymor-

phism in the human BDNF gene has been identified in which a

valine at amino acid 66 is substituted with a methionine

(Val66Met), leading to altered activity-dependent secretion of

BDNF protein [Egan et al., 2003]. The BDNF Val66Met polymor-

phism has been found in studies of both humans and animals to

affect anxiety traits and behaviors. An investigation of this poly-

morphism in human subjects found that the Met allele was associ-

ated with increased trait anxiety [Jiang et al., 2005]. In mouse

models, transgenic mice with homozygous knock-in Met alleles

exhibited increased anxiety-related behaviors that were not

normalized by treatment with antidepressants [Chen et al., 2006].

Intriguingly, anxiety is a known risk factor for cardiovascular

morbidity and is associated with autonomic dysfunction [Miu et al.,

2009]. A body of research has emerged demonstrating that anxiety

disorders, particularly panic disorder, generalized anxiety disorder

and post-traumatic stress disorder, are associated with reduced

vagal modulation or increased sympathetic activity [Friedman and

Thayer, 1998; Carney et al., 2000; Dishman et al., 2000; Gorman and

Sloan, 2000; Mellman et al., 2004; Bornas et al., 2005; Miu et al.,

2009; Shinba et al., 2008; Mujica-Parodi et al., 2009].

Although the specific role of BDNF in the pathophysiology of

anxiety remains to be identified, the associations between BDNF

and anxiety and between anxiety and autonomic dysfunction

suggest that BDNF may play a role in the autonomic system. In
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fact, several animal studies have suggested that BDNF may not only

affect serotonergic neurons, but that it may also have neurotrophic

or regulatory effects in neurons related to both the sympathetic and

parasympathetic systems [Deng et al., 2000; Slonimsky et al., 2003;

Zhou et al., 2004; Kasselman et al., 2006].

The potential modulatory effect of BDNF on neurons in the

autonomic system leads to our hypothesis that the BDNF Val66Met

polymorphism may affect autonomic function as characterized by

cardiac sympathovagal balance. In the present study, we tested this

hypothesis by employing an analysis of heart rate variability (HRV),

a widely accepted tool for assessing autonomic function, to

investigate the association of the BDNF polymorphism with the

sympathovagal balance in a sample of healthy adults.

MATERIALS AND METHODS

Subjects
Two hundred thirty-five healthy Han Chinese volunteers were

recruited from hospital colleagues at two medical centers: Taipei

Veterans General Hospital and Kaohsiung E-DA Hospital, Taiwan.

All subjects gave informed consent before commencement of the

study. The protocol was approved by the Institutional Review

Boards of the Taipei Veterans General Hospital (Taipei, Taiwan)

as well as E-DA Hospital (Kaohsiung, Taiwan). Each subject was

carefully reviewed for a history of medical disease and psychiatric

illness as well as medication use. Subjects included in the study did

not have a personal history of medical conditions (e.g., malignancy,

heart failure, or diabetes mellitus), pregnancy, psychiatric illnesses

or substance abuse/dependence. None of the subjects in this study

were taking any medication. DNA samples for all subjects were

obtained by drawing blood or by buccal swabs. Of these subjects,

214 were successfully contacted for ambulatory electrocardiogram

(ECG) monitoring. Three additional subjects were excluded at this

point due to the presence of frequent ectopic heartbeats. The

final study sample consisted of 211 healthy subjects (58 males and

153 females, aged 33.3� 10.3 years).

Self-Report Mood/Personality Trait Measures
Mood state was assessed by self-report using Zung’s depression

rating scale [Zung, 1965]. Scores on Zung’s depression scale range

from 20 through 80, and a score above the cut-off threshold of

49 indicates depressed mood. Three factors derived from Zung’s

depression scale, namely cognitive, mood and somatic dimensions,

were also evaluated for comparisons [Passik et al., 2000]. In

addition, we administered the Tridimensional Personality

Questionnaire [Cloninger, 1987], which measures three personality

dimensions: novelty seeking, harm avoidance, and reward

dependence. A validated Chinese version of the Tridimensional

Personality Questionnaire was employed in this study [Chen et al.,

2002].

Laboratory Methods
Genotyping of the BDNF gene Val66Met polymorphism was

performed using the PCR–RFLP method. In brief, the DNA

fragments of interest were amplified via PCR with the primers

50-ACTCTGGAGAGCGTGAAT-30 and 50-ATACTGTCACACA-

CGCTC-30. The Val66Met polymorphism was differentiated with

the NlaIII restriction enzyme. Partial digestion was minimized by

an internal restriction site and a control sample of digestible

homozygous Val/Val.

ECG Monitoring and Analysis of Heart Rate
Variability
Holter recordings (MyECG E3-80 Portable Recorder, Microstar,

Inc., Taipei, Taiwan) were used to obtain two hours of ECG signals.

The E3-80 device continuously recorded three channels of ECG

signals at a sampling rate of 250 Hz. The ECG signals were auto-

matically processed and analyzed by open source HRV algorithms

[Goldberger et al., 2000]. All ECG monitoring took place in the

daytime, and participants were asked to avoid smoking and to stay

in a resting state while being monitored.

Time domain measures of HRV include the mean heart rate and

standard deviation of the normal interbeat intervals (SDNN), the

root mean square successive difference between adjacent normal

interbeat intervals (RMSSD), and the percentage of adjacent in-

tervals that varied by greater than 50 msec (pNN50) [Mietus et al.,

2002]. The SDNN assesses the overall variability of interbeat

intervals. The RMSSD and pNN50 measure the short-term varia-

tion of interbeat intervals, which is mainly modulated by parasym-

pathetic innervation [Goldberger et al., 2001].

Conventional spectral HRV measures [Task-Force, 1996] in-

clude high-frequency power (0.15–0.40 Hz), low-frequency power

(0.04–0.15 Hz), and very-low-frequency power (0.003–0.04 Hz).

Low-frequency power is suggested to be modulated by both

sympathetic and parasympathetic activities, whereas high-frequency

power is mainly modulated by parasympathetic activity [Katona

and Jih, 1975; Pomeranz et al., 1985]. The low-frequency/high-

frequency ratio was computed as a measure of the sympathovagal

balance toward sympathetic activity [Malliani et al., 1994; Task-

Force, 1996]. The physiological mechanism underlying very-low-

frequency power is disputed, but has been suggested to be mediated

partly by the renin–angiotensin–aldosterone system [Akselrod et al.,

1981; Task-Force, 1996; Taylor et al., 1998], as well as by the

parasympathetic modulation [Taylor et al., 1998; Kleiger et al., 2005].

Statistical Analysis
We calculated allele and genotype frequencies and performed

Hardy–Weinberg equilibrium tests for each BDNF genotype. The

spectral HRV indices were log transformed to produce normalized

distributions. Chi-squared tests were used to compare categorical

variables. Differences in continuous variables were compared for

individual genotypes using one-way analysis of variance followed

by the Bonferroni post hoc test for corrections of multiple between-

group comparisons. In order to control the effects of non-genetic

factors, a general linear model (GLM) was used with age, gender,

and body mass index being entered as variables or covariates. Partial

correlation analysis was applied, controlling for age, to determine

the associations between HRV indices and self-reported mood scale

or personality traits. A P value of less than 0.05 (two-tailed) was

required for statistical significance.
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RESULTS

Demographic Data
Demographic and clinical data for subjects with the three BDNF

genotypes are presented in Table I. The Val66Met genotype distri-

bution (Val/Val: n¼ 47, 22.3%; Val/Met: n¼ 108, 51.2%; Met/Met:

n¼ 56, 26.5%) was in Hardy–Weinberg equilibrium. The three

BDNF groups did not differ in age, gender ratio, smoking status,

body mass index, self-report depression scale, or personality traits.

Of note, most volunteers were recruited from hospital colleagues,

and the rate of smoking was low (n¼ 2, 0.9%). It is also notable that

seven (3.3%) of the enrolled subjects were classified as having mild

depression (Zung’s depression scale between 50 and 59). However,

they had no clinical depression as evaluated by a psychiatrist during

the enrollment phase of the study.

Correlations Between Self-Reported Mood/
Personality Scale and Heart Rate Variability
A weak but significantly negative correlation existed between harm

avoidance, an index of anxiety traits, and HRV indices in the entire

study sample (n¼ 211), including SDNN (r¼�0.23, P¼ 0.008),

very-low-frequency power (r¼�0.19, P¼ 0.029), and low-

frequency power (r¼�0.22, P¼ 0.012). There were no

correlations between HRV indices and reward dependence, an

index of social attachment, and novelty seeking, an index of

exploration and impulsivity, or the self-reported Zung’s depression

scale and its sub-factors.

Association of BDNF Genotypes With
Heart Rate Variability
The HRV indices for the three BDNF genotypes are presented in

Table II. To exclude potential confounding factors of HRV indices,

we first tested the association between HRV indices and non-

genetic confounders, including age, gender, and body mass index.

Pearson’s correlation analysis showed that age was significantly

correlated with pNN50 (r¼�0.21, P¼ 0.003), very-low-frequency

power (r¼�0.29, P< 0.001), low-frequency power (r¼�0.47,

P< 0.001), and high-frequency power (r¼�0.34, P< 0.001). The

main effect of gender was significant only for the low-frequency/

high-frequency ratio (F¼ 10.71, df¼ 1, 210, P¼ 0.008), but there

was no significant BDNF-by-gender interaction in any HRV

variable. Body mass index had no correlation with any HRV

variable. Therefore, only age was entered as a covariate in the GLM

with HRV indices as dependent variables.

Comparisons of HRV indices for each genotype are shown in

Table II. Significant between-genotype differences (df¼ 2, 210)

were seen in RMSSD (F¼ 7.53, P¼ 0.001), pNN50 (F¼ 7.50,

P¼ 0.001), very-low-frequency power (F¼ 4.18, P¼ 0.017), low-

frequency power (F¼ 3.19, P¼ 0.043), high-frequency power

(F¼ 8.54, P< 0.001), and the low-frequency/high-frequency ratio

(F¼ 6.07, P¼ 0.003). The three BDNF groups did not differ in

mean heart rate and SDNN.

Scatter plots of spectral measures for each group are shown in

Figure 1. An increasing trend was identified in which the Met/Met

group had the lowest very-low-frequency power, low-frequency

power, and high-frequency power, followed sequentially by the Val/

Met group and Val/Val group. Conversely, a descending trend in

the low-frequency/high-frequency ratio was observed with decreas-

ing number of Met alleles.

Post hoc analyses following by GLM analysis were then per-

formed to assess the differences in HRV indices between the three

BDNF genotypes. Compared to the Val/Val group, subjects with the

Met/Met genotype had significant reductions in RMSSD

(P¼ 0.001), pNN50 (P¼ 0.001), very-low-frequency power

(P¼ 0.016), low-frequency power (P¼ 0.037), and high-frequency

power (P< 0.001). Conversely, the low-frequency/high-frequency

ratio was significantly increased in the Met/Met group compared to

the Val/Val group (P¼ 0.001). Similarly, compared to the Val/Met

TABLE I. Demographic Data and Psychiatric Characteristics of the Three BDNF Genotype Groups

Val/Val (n ¼ 47) Val/Met (n¼ 108) Met/Met (n¼ 56) F or x2 P
Demographic

Age, years (SD) 32.6 � 9.9 32.6 � 10.0 35.1� 10.9 1.25 0.290
Gender, M/F 13/34 30/78 15/41 0.02 0.990
Current smoker, n 0 2 0 1.93 0.381
Body mass index, kg/m2 21.8 � 3.61 22.1 � 3.8 22.0 � 3.8 0.07 0.937

Depression scale
Zung’s Self-Rating Depression Scale 33.4 � 11.6 31.0 � 10.4 35.1� 11.2 1.83 0.165

Cognitive factor 17.8 � 6.7 16.3 � 4.9 17.5 � 6.2 0.91 0.407
Mood factor 5.7 � 3.1 5.0 � 3.1 5.8 � 3.2 0.88 0.417
Somatic factor 6.4 � 2.7 6.5 � 2.8 7.3 � 2.7 1.55 0.216

Personality dimension
Novelty seeking 15.0 � 3.9 15.8 � 4.3 15.7 � 3.4 0.43 0.653
Harm avoidance 14.5 � 6.9 15.7 � 6.7 15.9 � 7.7 0.35 0.703
Reward dependence 18.4 � 3.3 19.2 � 3.5 19.1 � 3.7 0.48 0.620

BDNF, brain-derived neurotrophic factor.
Data represent mean � 1 standard deviation unless otherwise noted.
F ratios from one-way analyses of variance (df¼ 2,210); c2 from contingency tables.
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group, the Met/Met group showed reductions in RMSSD

(P¼ 0.025), pNN50 (P¼ 0.008) and high-frequency power

(P¼ 0.028), and increases in low-frequency/high-frequency ratio

(P¼ 0.033). The Val/Val and Val/Met groups differed with border-

line significance only in high-frequency power (P¼ 0.091), but did

not differ in the other time and spectral HRV components.

DISCUSSION

The key finding emerging from this study is that subjects bearing the

BDNF Met/Met genotype had reductions in RMSSD, pNN50, and

high-frequency power and increases in the low-frequency/high-

frequency ratio, indicating an altered sympathovagal balance with

reduced parasympathetic modulation and possibly increased sym-

pathetic activity. To our knowledge, this is the first study to

investigate the role of BDNF genetic variants in human autonomic

functions. Our findings support the hypothesis that sympathovagal

balance is altered by the BDNF polymorphism. There are several

implications of our findings. First, dysregulation of the autonomic

system, particularly low parasympathetic (vagal) activity, is associ-

ated with the onset and poor prognosis of cardiovascular diseases

[Camm et al., 2004; Fei et al., 1996; Tsuji et al., 1996]. Recent

evidence suggests that nerve growth factor and BDNF are involved

in the development of cardiovascular disease and related disorders

[Chaldakov et al., 2004; Liu et al., 2006]. Our finding of reduced

vagal activity in the Met/Met genotype may implicate a risk factor

for onset of cardiovascular events in the long run. Second, the Val/

Met heterozygote group showed an intermediate distribution of

high-frequency power and the low-frequency/high-frequency ratio

after adjusting confounders (Fig. 1), suggesting the presence of

codominant inheritance or a gene–dose relationship. Third, our

findings complement conventional approaches of using self-report

questionnaires, which often cannot effectively separate one pheno-

type from another. There is evolving evidence that heart rate is

genetically determined [Singh et al., 1999]. Although the exact

mode of genetic transmission is unclear, an analysis of HRV

nevertheless provides quantitative phenotypic markers of auto-

nomic nervous system function [Singh et al., 1999] to investigate

the pathophysiology of complex traits and diseases.

The Role of BDNF in the Autonomic Nervous
System
Acetylcholine is an essential neurotransmitter in the parasympa-

thetic system. It has been reported that choline acetyltransferase, the

enzyme synthesizing acetylcholine, can be activated by BDNF

[Burgess and Aubert, 2006], indicating a potential modulatory role

of BDNF in the parasympathetic system. Moreover, several findings

have emerged to support the modulatory effect of BDNF in the

sympathetic system, including the following: (1) BDNF has been

found to modulate the cholinergic properties of sympathetic

neurons [Slonimsky et al., 2003], (2) Variation of BDNF synthesis

in a mouse model is correlated with synaptic innervations to

sympathetic neurons [Causing et al., 1997], and (3) BDNF is

suggested to have a potential role in pathophysiology in human

autoimmune diseases associated with sympathetic overactivity

[Kasselman et al., 2006]. Our findings, focusing on the study of

humans, complement the above research by providing evidence of

the impact of BDNF polymorphism on autonomic functions.

BDNF, Heart Rate Variability, and Personality
Traits
Consistent with other reports [Tsai et al., 2004; Frustaci et al., 2008],

the link between BDNF and trait anxiety is inconclusive in the

present study as trait anxiety, measured by harm avoidance, did not

differ among BDNF groups. Furthermore, our results showed no

correlations between trait anxiety and autonomic-related HRV

measures (e.g., RMSSD, pNN50, high-frequency power, or

low-frequency/high-frequency ratio). Therefore, we are not able

TABLE II. Effects of BDNF Genotype on Heart Rate Variability

Val/Val
(n¼ 47)

Val/Met
(n¼ 108)

Met/Met
(n ¼ 56) F P Post hoc

Time domain
Mean heart rate, beats/min 80.9� 15.5 84.8 � 12.4 83.4� 10.3 1.63 0.198 —
Standard deviation of normal interbeat intervals, msec 81.8� 22.9 74.7 � 22.4 71.3� 21.6 2.90 0.057 GG > AA
Root mean square successive difference between

adjacent normal interbeat intervals, msec
35.0� 13.0 30.8 � 14.7 25.1� 9.3 7.53 0.001 GG � GA > AA

Percentage of adjacent normal interbeat intervals that
varied by greater than 50 msec, %

13.6� 11.5 11.2 � 12.1 5.8 � 5.9 7.50 0.001 GG � GA > AA

Frequency domain
Very-low-frequency power, ln(ms2/Hz) 8.72� 0.52 8.50 � 0.53 8.43� 0.59 4.18 0.017 GG � GA > AA
Low-frequency power, ln(msec2/Hz) 7.57� 0.62 7.35 � 0.65 7.25� 0.67 3.19 0.043 GG > AA
High-frequency power, ln(msec2/Hz) 6.80� 0.74 6.48 � 0.91 6.11� 0.77 8.54 <0.001 GG � GA > AA
Low-frequency/high-frequency ratio, ln(msec2/Hz) 2.75� 1.36 3.15 � 1.68 3.80� 1.47 6.07 0.003 GG � GA < AA

BDNF, brain-derived neurotrophic factor; GG, Val/Val; GA, Val/Met; AA, Met/Met.
Data represent the unadjusted mean� 1 standard deviation of heart rate variability variables. Power spectral estimates were log transformed due to skewed distributions. F ratios from one-way analyses
of variance (df¼ 2,210) followed by Bonferroni post hoc comparisons.
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to assess the relationship between neuroticism and altered

sympathovagal balance in this study sample. However, since low

vagal tone is associated with anxiety, and BDNF has already been

implicated in both depression and anxiety disorders [Martinowich

et al., 2007], we cannot exclude the possibility that the Met/Met

genotype with low vagal activity will have a higher incidence of

mood/anxiety disorders in the long run.

LIMITATION

There are limitations to the present study. As the study design was

cross-sectional, we cannot directly evaluate the long-term impact of

the BDNF polymorphism on autonomic function and the incidence

of anxiety. Thus, the observational nature of our study does not

allow us to draw conclusions on the causality of the link between

anxiety and sympathovagal imbalance. In terms of HRV analysis, a

debate exists regarding how effective the low-frequency/high-fre-

quency ratio is for separating sympathetic from parasympathetic

influences on heart rate [Berntson et al., 1997]. Indeed, our results

indicate more significant reductions in high-frequency power than

low-frequency power when comparing the Met/Met group to the

Val/Val group. Therefore, we cannot exclude a contribution of

differences in sympathetic activity to our findings.

CONCLUSIONS

In conclusion, despite the lack of associations between BDNF

polymorphism and trait anxiety, subjects bearing the Met/Met

genotype exhibited reduced parasympathetic modulation and pos-

sibly increased sympathetic activity. A longitudinal investigation of

the impact of this BDNF-associated autonomic imbalance on

incidence of anxiety disorders and cardiovascular diseases should

be conducted in the future.
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